


By Acodemy



© Copyright 2015
All rights reserved. No portion of this book may be reproduced –
mechanically, electronically, or by any other means, including
photocopying without the permission of the publisher



LEARN PHP IN A DAY
The Ultimate Crash Course to Learning the

Basics of PHP in No Time



Disclaimer
 

The information provided in this book is designed to provide helpful information on the subjects
discussed. The author’s books are only meant to provide the reader with the basics knowledge of a
certain topic, without any warranties regarding whether the student will, or will not, be able to
incorporate and apply all the information provided. Although the writer will make his best effort
share his insights, learning is a difficult task and each person needs a different timeframe to fully
incorporate a new topic. This book, nor any of the author’s books constitute a promise that the reader
will learn a certain topic within a certain timeframe.



Contents
Preface
Chapter One – Introduction, Setup and “Hello World”

Introduction to PHP
Setting up Our Work Environment
Our Very First PHP file

Chapter Two – Variables
Introduction to Variables

Basics
Rules

Variable Types and Typecasting
Boolean
Number
String
Array
Objects
NULL

Conclusion
Chapter Three – Logical, Math and other Expressions and Operations

Introduction to Expressions and Operators
Expressions
Operators

Conclusion
Chapter Four – Control Structures

Introduction
If statements

If Statements
If Else Statements
If-elseif-else statement

Switch
Alternate syntax to control structures
While



Do-while
For
Foreach
Break
Continue
Return
Include
Require
Require_once
Include_once
Conclusion

Chapter Five – Functions
Introduction
User Defined Functions

Function Arguments
Return values
Variable Scope

Pre-defined functions
Echo, Print, exit, die
String functions

Conclusion
Chapter Six – Databases

Introduction
What is an API?

Connectors
Drivers
Extensions
PHP MySQL APIs
mysqli Extension
PDO Extension

PHPMyAdmin and getting familiar with MySQL
Basics

MySQLi
Dual interface
Connections



Executing statements
Prepared statements

Conclusion
Chapter Seven – Form Data

Introduction
Methods for sending Form Data

Referencing information from forms
Security
Conclusion

Chapter Eight – Sessions and Cookies
Introduction
Sessions

Passing the Session ID
Custom Session Handlers

Cookies
Creating and retrieving cookies with PHP
Modifying a cookie using PHP
Deleting a cookie using PHP
Check if Cookies are enabled using PHP

Conclusion
Chapter Nine – File Handling

Introduction
File Handling

Reading Files
Opening files
PHP Reading files
PHP Closing files
PHP Create File
PHP Write to File
PHP Overwriting

Conclusion
Chapter Ten – Object Oriented Programming

Introduction
Basics

Class



new
extends
Properties
Constants
Autoloading Classes
Constructors and destructors
Object Inheritance
Scope Resolution Operator (::)

Conclusion
Answers to Exercises

Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10



Preface
 

1. Introduction to the Course
 

Welcome to this Introductory Course to PHP. Throughout this course, you will learn the basics
behind using PHP in your own projects. You will be introduced to some of the most commonly used
functions and methods as well as PHP best practices. This course will mostly teach by example,
emphasizing a “show, don’t tell” approach. We will guide you through different real-world examples
of PHP applications and explain every step of the process so that you understand not only how, but
also why we are writing our application the way we are.

The course is structured around different chapters, where each chapter is focusing on a particular
aspect of programming with PHP. At the end of each chapter, there will be a chapter summary and a
chapter exercise that will test all the skills you have learned in the chapter thus far, as well as build
on top of previous knowledge.

You will be presented with code at every step of the way. Code will be easily recognized as it
will be separated from the rest of the text, and will be formatted differently. Here is an example of a
code block:

 
 

With all of that out of the way, let’s get started with the course!



Chapter One – Introduction, Setup and “Hello World”
Introduction to PHP
 

PHP stands for PHP: Hypertext Preprocessor (originally it meant Personal Home Page)
and is one of the most widely used web programming languages (installed on more than 250 million
websites). It is similar to languages such as C. But let’s not spend too much time in historical
references and get to work!



Setting up Our Work Environment
 

In order to start working with PHP on your local computer, you need to install a development
environment. Why is this so? PHP is a server-side language; so in essence, you need to install a
“local server” on your computer in order to run PHP code. There are many solutions that provide
PHP packages, but the most common form is known as a LAMP bundle. There are many LAMP
bundles out there that fit different operating systems. The most common are:

XAMPP – an Apache distribution with PHP, MySQL and Perl. Support available for
Windows, Linux and Mac;
WAMP – specific for Windows;
MAMP – specific for Mac;

Pick one, type the name in Google, follow the download link and instructions and you’ll be all set
to go.

Also, you will need some form of text editor. There are many free and paid programs you can
find. The one we are using for this course is called Notepad++.



Our Very First PHP file
 

After having installed your LAMP bundle, you undoubtedly want to create your very first PHP file. If
you haven’t already, make sure that you have Apache and MySQL active. To check, go to the control
panel of your LAMP setup and you should see something like this:

Navigate to the installation directory of your LAMP bundle. In my case it looks something like:
“ C:\xampp\htdocs ”. “ htdocs ” is the directory that contains all of your websites. Generally, for the sake of
clarity, I like creating a “ websites ” directory inside of “ htdocs ” and working from there. In either case,
create a new folder for your website and give it a name. Try to refrain from using spaces (use _
instead). Inside that folder, create an “ index.php ” file. Open the file in your text editor and type the
following lines of code:

All PHP code is wrapped within the PHP tags ( <?php ?> ). Notice that we say all PHP code, not all
PHP files. That is, you can have things such as HTML inside a .php  file. More on that in another
chapter, though.

Some more rules to keep in mind in terms of syntax:

-          In PHP every statement ends with a semicolon.
-          Comments:



Comments in PHP can be single-line or multi-line. Single line comments start with two
backslashes ( // ). Anything placed after these slashes is considered a comment and will not be
executed by the compiler. Multi-line comments start with a forward slash and a star and end with a
star and forward slash ( /* Comment goes here*/ ). Again, the compiler will ignore anything placed inside
of these symbols.

Here is an example of comments in code:

Multi-line comments are usually used for longer descriptions of blocks of code, while single-line
comments are used (as in the example above), when you want to describe what a certain line of code
does. Multi-line comments can be also useful for debugging. For example, if you have a portion of
code that is not working the way you want it to, you can “comment it off” by using multi-line
comments and tests bits of it to see what exactly goes wrong.

There is no rule in PHP that tells you whether to use comments or not to, but it is considered
good practice to use comments. If you are going to share your code with other people, you should
definitely (and by definitely, we mean always!) use comments. What seems obvious to you will not
be so obvious to another coder. Furthermore, even if you are not going to be sharing your code, but
are instead just writing some file that you know will be for yourself, you should still make use of
comments (even if you don’t comment as extensively as you would if you were sharing). Very often
you will find yourself needing to revisit old code and when that happens you would want to quickly
be able to remember what you were doing and why you were doing it. Although they don’t add
functionality to your code, comments are just as important as the code you write, so don’t ignore
them!

Okay, after that digression, let’s return to our first PHP file. Open your web browser of
choice and enter the following URL: “ localhost/websites/your_folder_name_here/index.php ” or remove the
“ websites ” if your new website is in the “ htdocs ” folder.

You should see the words “Hello World!” being displayed at the top of the web page.

Hurray! Our very first PHP file is done! But that wasn’t very interesting, was it? Let’s move
on to chapter two where we learn about the different types of variables inside PHP and start having
some more fun!



Chapter Two – Variables
 



Introduction to Variables
Basics

 
In PHP, variables are declared using the dollar sign( $ ):

This declares, or creates, the variable. Important to note is that before you create the
variable, it is considered unset. It doesn’t exist. Kind of intuitive, but this can sometimes lead to some
unexpected errors as we are going to see later on.

Here we have created a string  variable (note that we don’t declare the type). We’ll look at the
different variable types a bit later in this chapter.

              Rules
 

              There are rules to keep in mind when creating variables inside of PHP. We’ll list all of them
and after that we will take a look at code that shows these. Here are the basic rules:

Variable names start with a letter or underscore;
Variable names cannot start with a number;
A variable name can have any number of letters, underscores of numbers;
Valid letters are all ASCII hexadecimal letters from 00 to FF;

Let’s take a look at an example of code declaring variables:

 

If we test our file we will get the following error message:

This tells us that we have an error in declaring our variable.



 



Variable Types and Typecasting
 

              Unlike many other languages, PHP does not require you to explicitly declare the variable
type, rather, it determines it from the context. In other words, you don’t have to explicitly tell PHP
whether you want a variable to be a double precision number or a string.  To help you imagine this,
you can think of variables as boxes. Imagine a row of lockers (like the kind you would see at an
airport or a train station). Each locker represents a variable. Each locker has its own unique number,
which differentiates it from all of the other lockers. If someone tells you to open locker number 42,
you would be able to find it without a problem and you wouldn’t confuse it with any other locker (for
example 24). In a similar way, PHP variable names are unique and each PHP variable is unique.
Now, you open locker number 42, and you see that it is empty. You move on to locker 43 and see that
there is a package inside it. You take the package from 43 and place it in 42. Before opening the
lockers you didn’t know what was in the lockers. After checking, you know what is contained inside
that locker and you can manipulate it as desired. In a similar fashion, variables in PHP can contain
anything you place in them. Essentially, when you are checking the type of a variable, you are
checking the type of the content inside of the variable.

              That explanation may be a bit confusing, but you’ll get used to it very quickly and you will
not have problems dealing with variables in PHP. Let’s take a look at some of the variables inside of
PHP:

Boolean
 

              Booleans are the simplest type of variables that exist in PHP. Booleans are used for logical
statements and to express a truth value. Booleans are binary, meaning that they take one of two
values: TRUE or FALSE . Having said that, let’s look at an example of a Boolean variable:

              Like many other languages, PHP is flexible in its use and interpretation of Boolean
variables. In other words, we can create Booleans without explicitly defining them as either being
TRUE or FALSE. IN fact, here is the list of rules that determines which values are considered to be
FALSE by PHP:

The Boolean FALSE ;
The integer 0 ;
The float 0.0 ;
The empty string and the string “0” ;
An array with zero elements;
The special type NULL ;



A SimpleXML  object created from empty tags;

Everything else will return true ;

This means that if we can write the following code and it will be valid:

Even though we still haven’t covered if statements, you can pretty much figure out what will
happen here. The implicit Boolean variable is defined inside the parenthesis (). Once the logical
operation executes it will return either a TRUE or a FALSE.

A couple of important things to note about the above example:

PHP considers the integer 1 to be the same as TRUE. That means, if we have defined the variable
‘var’ to be TRUE, and we check it against the integer one, the logical statement will return TRUE:

The second thing to note:

We are using a double equals sign to check whether one value is equal to another. Don’t make the
mistake of using a single equal sign.

After all of that, we should introduce typecasting. Typecasting is when we take the value a
variable and we convert it from one type to another. For example, we can have a variable with a
value of 42 and we want to cast it to a Boolean. Another example is if we have a variable with the
value of 42 and we want to cast it to a string (more on that later). For Booleans, type casting is for the
most part unnecessary (i.e. you will almost never ever do it). This is because values will
automatically be converted to Booleans if an operator, function or control structure requires a
Boolean as argument. However, for the sake of consistency with the other type casts, this is how to
cast a variable to a Boolean:

 



Number
 

Numbers in PHP, and most programming languages, come in different flavors. The two
subtypes of numbers in PHP are Integers and Floating point numbers. Let’s take a look at each one.

Integers
 

By definition,  integers are all numbers in the set:

In other words, integers are all whole, real numbers (both positive, negative and zero). PHP allows
us to define integers in a number of ways. You can define integers in base 10, base 8 (octal), base 16
(hexadecimal) or binary (base 2).In order to use octal notation for an integer, you need to precede the
number with a 0 . To use hexadecimal notation for an integer, you precede the number with an 0x .
Lastly, if you want to use binary notation, you precede the number with 0b . Here is an example:

Take note of the last function we use (don’t worry if you don’t know what functions are).

Helpful Tip!

You can check the type and contents of a variable by using var_dump().  The function takes one input
as an argument (again, don’t worry if you don’t fully understand. This means that you should only
put one thing inside the parenthesis). The function will print the type of the variable and the
contents to the screen. In the above example, the output to the screen will look like:

 

Now try to
use var_dump  on the other variables. Do you notice anything interesting? Do you see the value that is
being printed to the screen for each variable? What base is it in?

The largest number that can be stored on a 32-bit system as an integer is of magnitude 21474783647.
Anything larger than that will automatically be converted to a type of float . For a 64-bit system the
number is of magnitude 9223372036854775807. Anything larger than that will automatically be
converted to a type of float .

If you want to convert a variable to an integer, in other words cast it as an integer, you would do the
following:



This type of casting is useful in a number of situations, but the most common usage is for security. One
of the exercises at the end of the chapter will show you a particular usage of integer casting for
security purposes.

Floating Point Numbers
 
              Integers was the set of real and whole numbers, so logically, floating point numbers (also
referred to as “floats”, “doubles” or “real numbers”) will include everything else. That is, the
numbers that in between integers. Thus, we get the set of all real numbers. With that being said, it is
crucial to note that all computers have a limitation as to the precision with which they display
numbers (this is known as a machine epsilon). Furthermore, there are some weird discrepancies that
may occur when dealing with floats. We won’t go too much into that since it is beyond the scope of
this book, but if you find any non-intuitive results when dealing with floats, think about the precision
with which PHP handles floats.

Floats can be represented in the following ways in PHP:

 

String
             

Stings in PHP are series of characters. You use these to store pieces of text and words. PHP
handles each character as a byte. With that being said, we should note that the largest string that PHP
can support is of size 2GB. The fun bits come when defining strings.

Single quotes
The easiest way to define a string in PHP is to use single quotes.

What happens if we want to incorporate new lines in our string?



This is valid syntax inside of PHP, but the newline break will not be incorporated into the final
output. Not the use of the echo  function. What does the above code output?

Helpful Tip!
You can use the echo  command to output strings to the screen. In fact, echo  can be used with any of
the variable types to output their contents other than the array and object  types. This is very useful
tool for debugging and you should often use it when you need to check something quickly or to find
errors in your code.
 
OK, now imagine you want to input a string that contains a single quotation mark. What do you think
the output is going to be?

You can probably tell even from the syntax highlighting that this is not going to work. Every time PHP
encounters a single quotation mark, it will either start or end a string variable. In order to store a
single quotation mark, we need to escape it. In PHP, this is done using the backslash. The same thing
will happen if we want to include a backslash. We have to escape it with another backslash:

Use echo  to see the results above. Keep in mind that a backslash is used for escaping.(This means
that \n  will not render as a newline)

Another thing that cannot be used inside single quotation marks is variables. For examples, the
following will not expand inside of single quotation marks.

This will not display “Her name is Katherine” as you would expect.

In order to make the above example work, we need to concatenate the variable and the string. In PHP
we would do the following:



Test out the above code and confirm that it works.If you want to continue the string after the variable,
you just concatenate the next string to the variable. In other words you use $str.’your string here’ . This
works as long as the variable can be cast into a string (PHP does that automatically for you in this
case).

Double quotes
 
This is the more complex way of defining strings in PHP, but it gives you a lot more control and
flexibility. In the previous examples, we saw that \n, \t, \r and similar will not work in single quotes.
This is not the case with double quotes. Double quotes allow you to use those special symbols.

The most useful thing about double quotes, however, is their ability to parse variables. There are two
ways to parse variables inside of double quotation marks.

              Simple variable parsing
The simple way to parse variables is by just using the dollar sign inside of your string:

You can use this same concept if you want to reference elements of an array. (You should probably
come back to this section after reading about the next variable type).

              Complex variable parsing
This is called complex because it allows you to create more complex expressions, not because the



method itself is complex. This method requires you to use curly braces around your variables.

You can expand this and test it out on things such as arrays, objects and functions once you learn
about those.

String casting
As with all other variables, we can cast variables to strings. To do this you use the (string)  function. 
PHP will automatically convert variables to strings depending on the scope of the expression and if a
string is required. For example, if you use echo  on a variable, it will first convert it to a
string.Numbers will be converted to their textual representation. This means that 10 will become “10” .
Arrays and objects behave a bit differently, though. If you use echo on an array , you will get the
string “Array” . Similarly, if you use echo on an object, you will get the string “Object” .

Array
An array is a type of ordered map. What this means is that arrays will associate values to specific
keys. Arrays in PHP can be used to represent dictionaries, vectors, lists, stacks, queues, trees and
multidimensional arrays (arrays of arrays).

Arrays are created in the following way:

Note how we have used indentation for the sake of clarity. The extra whitespace is ignored by PHP,
but it makes our code easier to read and manage.

Each line of the array represents a key-value pair. Each line ends with a comma to indicate the next
key-value pair in the array. The last entry of the array does not need to have a comma at the end of it,
but most people like to include it. This convention is adopted by many people dealing with content
management systems such as WordPress, Drupal and others. (The idea of leaving the comma is that
you can take the entire line of key-value pairs and move it around in the array without having to worry
about including a comma).

The keys of an array can be either integers or strings. If you use something else for the array key, it
will automatically be cast into either of these types. (NOTE: arrays and objects cannot be used as
array keys as this will result in an error).



Alternatively, you do not need always need to supply the key. You can do the following:

This will create keys for you automatically by incrementing each key, starting from 0. We can check
the contents of the array:

You can see that the first entry of the array starts from key 0. It is important that you remember that the
first value in an array with default keys is always going to be stored under key 0.

You can reference elements of an array using the square brackets.

Play around with this syntax and try to create arrays of arrays (multidimensional arrays). In other
words, try to have an array as the value of some key. This looks like:

You will get a chance to practice this in one of the exercises.

If you want to create new elements to an existing array, or to modify elements of an existing array you
use the square bracket syntax:



The above outputs:

 

Objects
Objects will be an object of discussion in Chapter 10 and we shall leave them for now.

NULL
The NULL value is special and it represents a variable with no value. The only possible way of that
happening is if the variable is assigned the constant NULL, the variable has not been assigned a value
yet, or if the variable has been unset (remember the last example from the array section when we
unset the value of the 2nd entry).



Conclusion
 

This is the end of this chapter! You learned a lot about PHP and how it works. You’ve taken your first
steps, steps that you will use over and over again when writing code. This chapter may have been a
little boring in some bits, but it is important you learn these basics well so you can apply them
without having to think about it later on. Here are some exercises to get your gears going and get you
thinking about using what you’ve learned.

Exercise 1
You are given the following array of user data. Perform the specified manipulations to it:

1. Create a string that consists of the first and last name of the user by concatenating the
values from the array.

2. Suppose that this array will be stored into a database of other users. We want to make
sure that all values will be of the correct type.

1. Cast the user ID to a type of integer;
2. Cast the admin field to a type of Boolean;

3. Add a new field with a key of ‘email’  and set it to the value of: ‘ john.doe@example.com ’.

Exercise 2
Create a menu for a restaurant. To do this, you have to use a multidimensional array. Your menu has
to include three main subcategories (name your array menu  and the keys inside this array will be your
main subcategories). Each subcategory will include 4 meals/foods. For each meal/food you need to
include a list of ingredients and a list of nutritional information (carbs, sugars, protein, etc.). You
have to figure out the most efficient way to do this inside of PHP. (Hint: Think about how you want
to create and organize the information for each meal. Do you want to make the key the name of the
meal, or do you want to set the key to be automatically incremented and include the name of the
meal inside the array? Which makes the most sense to you? Which causes the least confusion?
Sketch it out on paper if need be).

Exercise 3



Imagine you are creating an online application for a restaurant and you are tasked with creating the
section for deliveries. Use the array from the previous exercise to provide yourself with the data for
the menu. Create a variable that represents one of the three main subcategories (it should have the
same exact name). Now create a variable that corresponds to one of the foods you made. Suppose that
these variables represent the choice made by a user when selecting their meal.

Create a string that would be a message displayed to the user with important information about their
order. It should look like this:
You picked: {name of meal here}.
This meal is made from: {list ingredients here}.
The nutritional information for this meal is: {list nutritional information here}.
Think about concatenation, single vs. double quotations, array referencing.



Chapter Three – Logical, Math and other Expressions
and Operations
 



Introduction to Expressions and Operators
Expressions
 
PHP revolves around expressions. Expressions are the basic building blocks of the language and
pretty much anything you write is considered an expression. A more formal definition of an
expression is “anything that has a value”.

In their most basic forms, expressions are constants and variables.So for example, if you want to
write $var = 42 , you are essentially assigning the value of 42 into $var .If in some later part of your code
you write $var2 = $var , you expect the value of $var2 to be the same as the value of $var , 42 .Taking this
one step further, functions (which we haven’t covered yet), are also considered expressions. A
function is an expression with the value of whatever value that function returns. (Even if you are not
familiar with functions inside of PHP, you should have some experience with mathematical functions.
You can imagine all of this in terms of y=f(x)  and you will get an idea of what we are talking about.)

It’s easy to confuse operators with expressions in PHP, but to give you a general comparison between
the two you can think of them like this. Operators are used inside of expressions. There are
comparison expressions and comparison operators. The operators are the symbol that you use (i.e. >,
<, ==), while the expression is what the comparison evaluates to (i.e. whether it evaluates to TRUE
or FALSE).

We won’t go into more details about expressions here, as we want to keep this book more about real
life applications instead of theory.

Operators
 
The technical definition of an operator in PHP is “something that takes one or more values (or
expressions, in programming jargon) and yields another value (so that the construction itself becomes
an expression)”.

Grouping of operators happens according to the number of values that the operator acts upon. There
are unary operators, such as the logical NOT operator or the increments operators ( !, ++,
-- respectively). Binary operators take two values. These are the familiar math operators that we all
know ( +, -,  etc. ). There is also a single ternary operator that we will go into more detail when
discussing logical operators.

Let’s go into analyzing the types of operators.

Operator Precedence
Operator precedence is used to determine how tightly an operator binds two expressions to one
another. Operator precedence is used in cases when you want to determine the result of an expression
such as 1+2*4  where parentheses are not used to force precedence.

When operators have equal precedence, their associativity decides how the operators are to be
grouped.  For example, if we write 1-2-4 this will give us -5 because the minus sign ( - ) is left-
associative.



Like in regular everyday math, you can use parentheses in PHP to force the precedence of an
operator. It is generally advised to use parentheses even if you have written your expression in a way
so you don’t need them. Using parenthesis is a best practice that makes code more human readable
and easier to understand.

Here is a comprehensive list of all operator precedence:

Associativity Operators More Information
Non-associative clone new Used to create a clone of

an object or a new
instance of an object
respectively

Left [ Used when
reading/writing to
elements of an array.

Right ** Used for exponentiation in
PHP

Right ++ -- (int) (float) (string)
(array) (object) (bool) @

These are the increment
and decrement operators
and the type casting
operators and the error
control operator (more
info about these later)

Right ! Logical negation operator
Left * / % Arithmetic operators for

multiplication, division
and modulo (remainder).

Left + - . Arithmetic operators for
addition and subtraction as
well as string
concatenation.

Non-associative == != === !== < > Comparison operators
Left && Logical AND operator
Left || Logical OR operator
Left ? : Ternary operator
Right = += -= *= **= /= .= %=

&= |= ^= <<= >>=
Assignment operators

Left and Logical operator
Left or Logical operator

 
With that we close our discussion of operator precedence.



Arithmetic Operators
Arithmetic operators work just like the basic arithmetic operators in regular math. Let’s begin by
taking a look at a list of all the arithmetic operators and then we will look at a few examples.

Example Name Result
-$var Negation Opposite (negative) of the

variable.
$var + $var2 Addition The sum of the two

variables.
$var - $var2 Subtraction The difference of the two

variables.
$var * $var2 Multiplication The product of the two

variables.
$var /  $var2 Division The quotient of the two

variables
$var %  $var2 Modulus The remainder the first

variable divided by the
second.

$var **  $var2 Exponentiation The result obtained by
raising the first variable to
the power corresponding
to the second variable.

 

When using the division operator, it is good to keep in mind that the result will be a float unless the
two operands are integers that are evenly divisible. If the two operands are integers that are not
evenly divisible, the returned value will be of type float.

The operands of the modulus operator are converted to integers before processing. The decimal part
of the value is stripped and the remaining integer is used.

The result of the modulus operator takes its sign from the dividend.

Let’s take a look at a couple of examples.



Assignment Operators
The most basic assignment operator is “ = ”. You might be tempted to think of this as an “equals to”,
but that would be a mistake. This operator actually means that the left operand gets the value of the
expression on the right. So essentially you can think of this as “gets sets to”. With this knowledge, we
can do some tricky and interesting things.

When dealing with arrays, assigning a value to a named key is done using the “ => ” operator. The
precedence of this operator is the same as the precedence of all assignment operators.

In addition to the basic assignment operator, there are a number of “combined operators” that come in
handy when we want to use shorthand for binary arithmetic operations. Let’s say we have a
variable $a equal to some value. In a later part of the code we want to set $a to be the previous value
of $a  plus some other value. To do that, we can write:

A simpler way of doing the above would be to use the combined operator for addition:



These combined
operators work for all arithmetic operations as well as for string concatenation. Here are a few
examples:

Comparison Operators
Comparison operators allow us to compare two values. Let’s take a look at a list of comparison
operators.

Example Name Result
$var == $var2 Equal Returns TRUE if the two

variables are equal. Type
juggling will be
implemented if necessary.

$var === $var2 Identical Returns TRUE if the two
variables are equal and of
the same type.

$var != $var2 Not equal Returns TRUE if the two
variables are not equal
after type juggling.

$var <> $var2 Not equal Returns TRUE if the two
variables are not equal
after type juggling.

$var !==  $var2 Not identical Returns TRUE if the two
variables are not equal or
they are not of the same
type.



$var <  $var2 Less than Returns TRUE if the first
variable is strictly less
than the second.

$var >  $var2 Greater than Returns TRUE if the first
variable is strictly greater
than the second.

$var <=  $var2 Less than or equal to Returns TRUE if the first
variable is less than or
equal to the second.

$var >=  $var2 Greater than or equal to Returns TRUE if the first
variable is greater than or
equal to the second.

 

If you are comparing a string with a number or the comparison is between numerical strings, the
strings are converted to numbers and the comparison is performed numerically.The type conversion is
not done when using === or !==  as these operators check for type as well as value.

Another conditional operator to be aware of is the ternary operator. The ternary operator is
essentially a short hand for the if/else control structure (more on that later). The ternary operator has
the form (some conditional expression) ? {do this if true} : {do this if false} . (The curly brackets are not used, they just
there for clarity). Here is an example of a ternary operator as you would use it in an application and
the corresponding if/else statement that it represents:



You can see that using the ternary operator is a lot shorter than writing out the entire if/else statement.

This concludes our overview of comparison operators. We have not extensively covered the
comparison between variables of different types, but such information can be found in the PHP
documentation available online so we have decided not to include it.

Error Control Operators
The error control operator is something that should be used cautiously. In PHP, the error control
operator is the at sign ( @ ). When an expression is prepended with the error control operator, any
error messages associated with that expression that would normally be generated will be ignored.

Using this operator has it’s downsides because if you prepend it to an expression that generates an
error that causes script termination, the script will stop without telling you why, which is bad for
debugging.

We will not go into examples of using the error control operator, as you would rarely have to use it
and should try to form your code so that you do not rely on it.

Incrementing and Decrementing Operators
The incrementing and decrementing operators are the ones you would see in C-style languages. These
operators affect numbers and strings but not arrays and objects. Decrementing NULL values has no
effect, but incrementing a NULL value results in 1.

Here is a list of the incrementing and decrementing operators.

Example Name Result
++$var Pre-increment Increments the variable by



one, then returns the value.
$var++ Post-increment Returns the value of the

variable, then increments
the variable by one.

--$var Pre-decrement Decrements the variable
by one, then returns the
value.

$var-- Post-decrement Returns the value of the
variable, then decrements
the variable by one.

Let’s look at a few examples of how these work:

We can also increment characters. We cannot decrement characters.

Logical Operators



PHP supports logical operators that allow us to evaluate logical statements. Here is a list of logical
operators

Example Name Result
$a and $b And Returns TRUE if both

variables are true.
$a or $b Or Returns TRUE if either

one of the two variables is
true.

$a xor $b Xor (either) Returns TRUE if either
one of the variables is
true, but not both.

!$a Not Returns TRUE if he
variable is not TRUE.

$a && $b And Returns TRUE if both
variables are true.

$a || $b Or Returns TRUE if either
one of the two variables is
true.

 

There are two logical operators for “AND” and for “OR” because they have a different order of
precedence. The most common usage of logical operators is within an if/else statement or within the
first expression of a ternary operator. Let’s look at some examples of logical operators and how they
are used.

String Operators
There are only two types of string operators and we have already seen both of them. The first
operator is the dot operator which concatenates two strings. The second operator is the combined



concatenating assignment operator which appends the argument on the right side to the argument on
the left side. You will use both very frequently.



Conclusion
 
This concludes our overview of the different types of operators and expressions inside of PHP. You
are getting closer and closer to writing your first real PHP applications! You need two more basic
building blocks, covered in the next two chapters and you will be on your way to coding intermediate
and advanced applications!

Exercise 1
Arithmetic-assignment operators perform an arithmetic operation on the variable at the same time as
assigning a new value. For this PHP exercise, write a script to reproduce the output below.
Manipulate only one variable using no simple arithmetic operators to produce the values given in the
statements.

 

Hint: In the script each statement ends with "Value is now $variable."
Value is now 8.
Add 2. Value is now 10.
Subtract 4. Value is now 6.
Multiply by 5. Value is now 30.
Divide by 3. Value is now 10.
Increment value by one. Value is now 11.
Decrement value by one. Value is now 10.

Exercise 2
For this PHP exercise, write a script using the following variable:
$around="around";
Single quotes and double quotes don't work the same way in PHP. Using single quotes (' ') and the
concatenation operator, echo the following to the browser, using the variable you created:

What goes around comes around.

Exercise 3
PHP allows several different types of variables. For this PHP exercise, you will create one variable
and assign it different values, then test its type for each value.

Write a script using one variable “$whatsit” to print the following to the browser. Your echo
statements may include no words except “Value is”. In other words, use the function that will output
the variable type to get the requested text. Use simple HTML to print each statement on its own line
and add a relevant title to your page. Include line breaks in your code to produce clean, readable
HTML.
Value is string.
Value is double.
Value is boolean.
Value is integer.
Value is NULL.



Chapter Four – Control Structures
Introduction
 

PHP scripts are built out of a series of statements. A statement can be an assignment, a function call, a
loop, a conditional statement or even empty statements. Statements can be grouped into statement
groups by encapsulating them with curly braces. A statement group is considered a statement itself.

In this chapter we will observe the behavior of different types of statements.



If statements
If Statements
The “if” statement is one of the most important structures inside any language.This control structure
allows you to have conditional execution of code fragments. PHP’s “if” structure is similar to that of
C. That is, each if statement at its most basic looks like if (expression) statement . The expression is
evaluated to its Boolean value. If the expression is TRUE, PHP will execute the statement. If it is
FALSE, it will not execute it. A simple example is:

Very often you would need to execute more than one statement if a certain condition is true. You don’t
need to wrap each statement in its own if clause. Instead, you can use curly braces to wrap the code
you want to be executed conditionally.

You can even take it one step further and nest if statements inside of other if statements.

If Else Statements
In some cases you want to execute a piece of code when a condition is met and a different piece of
code if that condition is not met.  In that case, you would have to use and if-else statement. else  extends
an if statement to execute an expression if the statement evaluates to FALSE. Here is an example that
extends the one above:



If-else if-else statement
This is yet another modification to the if statement and it presents the most generalized form of an if
statement. It includes and if statement that executes a block of code if the statement if TRUE. After
this if statement, you have a number of elseif  statements. Each else if statement has a condition
associated with it and a block of code to be executed if true. The block of code is executed only if the
condition evaluates to true. After all of the elseif statements there is a closing else statement. You can
think of this as a kind of default case. If none of the conditions evaluate to true, the else  statement will
be executed. Here is an example:

Keep in mind that as soon as a condition is evaluated to TRUE, the script executes the associated
block of code and breaks out of the if-elseif-else structure and will not go down to any of the other
conditions. That is, only one condition will be executed when using an if-elseif-else.A structure that
is related to the if-elseif-else structure is the switch  statement which is the subject of discussion next.



Switch
The switch statement is similar to a bunch of if  statements operating on the same variable. Imagine
you have some variable that can take some values. In your code, you want to compare if that variable
corresponds to some specific values. For each value, there is a code segment that has to be executed.
Also, if the variable does not meet any of those cases, you want to execute some default piece of
code. You could do this using a long if-elseif-else structure, but you could also do it using a switch
statement.

A switch statement does the same thing as an if-else-if structure, but saves you some typing. The
syntax for a switch statement is:

You can have as many cases as you need for your code. An important thing to keep in mind is the
presence of the break statement. The break command breaks you out of the current structure or loop you
are in. If you did not have the break command inside each case, PHP would go through each case.
That is, PHP checks the variable against each case and executes the specified code within if the
comparison returns TRUE. If PHP does not encounter a break  command, it continues to the next case
and executes the specific code if the comparison of that case returns TRUE.This is one of the
differences between using an if-elseif-else structure and a switch  statement.

Let’s take a look at an example comparison between the if-elseif-else structure and the switch  statement:



That’s pretty much all there is to switch statements. Learn how to utilize them and you will make your
life faster than having to write out all of the if-else statements.



Alternate syntax to control structures
 

Before going on to each of the other control structures, let’s take a moment to go to over the alternate
syntax that PHP offers us for control structures. PHP offers us an alternative syntax for some of the
control structures. These are: if , while , for , foreach and swtich . In each case, the basic form of the
alternate syntax is to change the opening brace to a colon and the closing brace to
an endif; , endwhile; , endfor; , endforeach; , or endswitch; , respectively (basically end with the name of the
control structure appended.). What this allows us to do is break out of PHP in order to include for
HTML, for example.

We haven’t really talked much about including HTML inside of your PHP scripts, but it is actually a
really easy concept. One way to include the HTML is to save the HTML string to a variable and
then echo or print  that variable. In fact, this is a method that you are going to find yourself using quite
often. This method, however, has its shortcomings. For example, imagine you want to create a table
that is not dynamically generated (that is, you are not using PHP to generate the table rows for you).
The table has a specific layout and you want to include the value of some PHP variable inside one of
the cells for example. If you try to write that inside a variable, you will find that it is very tedious and
not efficient. (Unless for some reason you need to store that HTML in a variable, in that case you are
stuck using the HTML to variable method). You can break out of PHP and then break back into PHP
and include the necessary HTML inside the break. Here is a simple example:

OK, after that digression, let’s see the alternate syntax for an if statement:

This looks exactly like the code above and will work exactly as you would expect it to.

Helpful Tip!

Whenever you are creating control structures that have to be encapsulated inside of curly braces,



always write out the entire control structure skeleton first before going in to fill it up. That is, if
you are creating an if statement, you would write out:

Always make sure you do this! If you do this, you will never have to keep track of opening and
closing brackets and/or parentheses. In fact, you should make it a rule to yourself. WHENEVER YOU

OPEN A BRACKET OR PARENTHESIS, CLOSE IT BEFORE YOU WRITE ANY OTHER CODE. Then go back and fill in the
code you need. This will keep you from making stupid errors and spending precious time
debugging code while you could have been writing an amazing application.

Another way to write the alternate syntax is to keep the curly braces and break out of PHP like
normal. The following two statements are equivalent:

That does it for the alternate syntax for control structures. You will often find yourself these alternate
syntaxes in your code when you are juggling between PHP and HTML. In the next subchapter we will
begin out discussion of the different types of looping structures in PHP. Keep in mind that the
alternate syntax we discussed in this structure is applicable to some of the next structures as well.



While
 

This is the first type of loop that we will be talking about and it is also the simplest. The form of a
while statement is:

The meaning of the while loop is also simple to understand. While loops tell PHP to execute the
nested statement (does not need to be a single statement, it could be a block of code and in most cases
it will be) as long as the while expression evaluates to TRUE. The expression is evaluated once at
the beginning of the loop so even if the value of the expression is to change during the execution of the
loop, the execution of the loop does not terminate (unless told otherwise) until the beginning of the
next iteration. It is important to note that if the expression is FALSE the first time PHP checks it, the
statement will not be executed.

As we mentioned, the statement could be a number of statements wrapped inside of curly braces. As
with the if statement, we can use the alternate syntax to form our while loop. This is the general form
of a while loop using alternate syntax for control structures:

Let’s run a simple example of this loop to count from 1 to 10.

While loops are very commonly used, especially when you are extracting information from a database



(we’ll look at that in a later chapter).

One potential pitfall to lookout for is creating infinite loops, that is, loops that will never terminate
(the while condition will always evaluate to TRUE). There are cases in which you would want to
create an infinite loop and terminate it on a certain condition, but other times this behavior is not
desired. Imagine the following examples.

You want to set up an application that will check the status of something and send an email to a user.
Say, you are monitoring the status of a server and you want to know if something is going wrong. You
want a script that will be running indefinitely and checking the server status at defined intervals. This
can be achieved using an infinite loop that pauses for some defined amount of time before it resumes
operation. Another example is if you are setting up a simple game using PHP to test your skills. You
want to set up a main loop (you can refer to it as a “game loop” if you wish) that will run once each
frame and do the operations that are associated with the game. Another example is if you are waiting
for user-defined input. In that case you would set up an infinite loop that takes the user input and
operates on it.

At the start infinite loops can be tricky and can cause you some problems, so try to avoid them until
you are comfortable with the concept of looping and know what you are doing.

The easiest way to set up an infinite loop is:

The while condition will always evaluate to TRUE (in essence, the loop reads: while TRUE, execute
{statement} ).



Do-while
 

The do-while loop is similar to the loop we saw in the previous subchapter, with a minor difference.
Do-while loops have the following structure:

This means that PHP will execute everything that is inside the do clause first, and then it will check
the condition. If it evaluates to TRUE, PHP will loop back. What you will notice is that you evaluate
the condition at the end of the loop instead of the beginning. This means that the code inside the do
statement is guaranteed to run at least once. For example:

This code will execute exactly one time before terminating because the truth expression evaluates to
FALSE.

The only major difference between a do-while and a while loop is that the do-while will run the code
at least once, whereas the while loop will not. With that being said, it should be noted that the while
loop is the loop that you will be using most commonly in practice, but don’t forget that the do-while
loop exists!



For
 
For loops are more complex than while and do-while loops, but you should become really
comfortable with them because you will be using them all the time! Here is the basic syntax of a for
loop:

The first expression is evaluated (executed) once at the beginning of the loop.

The second expression is evaluated at the beginning of each iteration. If it evaluates to the TRUE, the
loop will continue, and the nested statement(s) are executed. If it evaluates to FALSE, the execution
of the loop terminates. At the end of each iteration, the third expression is evaluated (executed).

Each of the expression can be empty or it can contain multiple expressions separated by commas. If
the second expression is empty, PHP assumes it to be TRUE. Essentially this will create an infinite
FOR loop. Let’s look at the following examples:



As with the while and if statements, for loops support the alternate colon syntax for control structures:

Very often, people will loop through arrays using for loops. While it is not wrong to do this, it is
more convenient to use foreach loops for arrays or objects, because that control structure is
specifically setup for arrays and provides you with more control.

Now that we’ve introduced the two types of looping in PHP, you may be asking yourself: What is the
difference between a while and a for loop and when should you use each one? Here is the general
rules of thumb that will guide you through the proper usage of for and while loops in your PHP
applications.



For loops are for when you know how many iterations of the loop you need. For example, if you want
to operate on each element of an array, you use a for loop that loops from the first to the last value of
the array. The easiest way is if you have an array where each key is an incremental number. You
initialize the counter variable to 0 (this is usually going to be the first value of the array. Remember,
PHP counts from 0). After that, you check whether you have reached the last element of the array. To
do that you check whether the counter variable is smaller than or equal to the length of the array (you
can use the count()  function to find the number of elements in the array.) The last expression will be
incrementing the counter variable.

While loops on the other hand, are to be used when you don’t know how many iterations your loop
will take until the truth condition evaluates to FALSE.

A closing word about for loops:

For loops can be used on string characters as well. Can you set up a for loop that will print out the
letters of the alphabet?



Foreach
 
The foreach construct provides an easy way to iterate over arrays and objects, but it will only work
on arrays and objects and will give you an error if you try to use a foreach on a different kind of
variable type. There are two syntaxes to the foreach loop:

The first syntax loops over an array ( array_expression )and takes the value of each element and assigns it
to $value . In the second syntax, you reference both the key and the value of each element of the array.
Let’s look at an example:

Note that the reference to $value  remains after the foreach loop, so you should unset it (destroy it) after
the loop to prevent any issues with your code.

Foreach loops and while loops are very commonly used in tandem when working with database
information, but we shall see that in the chapter concerning databases.



Break             
 
So far we have seen the use of the break  command to break out of loops, but we have not defined it
explicitly until now.

break  ends execution of the current for , foreach , while , do-while  or switch  structure.

break  accepts an optional numeric argument which tells it how many nested enclosing structures are to
be broken out of.

Here is an example of how the break  command works with the optional argument:



 
Continue
 
The continue command is similar to the break command, but it does not break out of the loop. Instead
it continues to the next iteration of the loop. This command can be used inside of switch statements as
well, but the results of that would be the same using a break. You can think of it this way:

Continue takes you to just before the last closing curly bracket of your structure. If it is a loop, you
will go to the next iteration of the loop. For a switch statement, when the execution is taken to just
before the closing curly bracket, you are essentially being taken to the end of the switch statement.

In contrast, break will take you to just outside the last closing curly bracket of your code. For a loop
that means that you have broken out of the loop. For a switch statement, that means that you break out
of the switch statement and do not go through any of the cases.

As with the break statement, continue takes an optional argument that tells PHP how many levels of
enclosing loops it should skip.



Return
 
The return command returns program control to the calling module. Execution resumes at the
statement following the called module’s invocation.

If you use return from within a function, the return statement immediately ends execution of the current
function, and returns the argument of the return as the value of the function call.

Try to abstain from using return inside of a file that is included in another file as this is bad practice.



Include
 
Files are included based on the file path given or, if none is given, the include_path specified. If the
file isn't found in the include_path, include will finally check in the calling script's own directory and
the current working directory before failing. The include construct will emit a warning if it cannot
find a file; this is different behavior from require, which will emit a fatal error.

If a path is defined — whether absolute (starting with a drive letter or \ on Windows, or / on
Unix/Linux systems) or relative to the current directory (starting with . or ..) — the include_path will
be ignored altogether. For example, if a filename begins with ../, the parser will look in the parent
directory to find the requested file.

For more information on how PHP handles including files and the include path, see the documentation
for include_path.

When a file is included, the code it contains inherits the variable scope of the line on which the
include occurs. Any variables available at that line in the calling file will be available within the
called file, from that point forward. However, all functions and classes defined in the included file
have the global scope.



Require
 
Require is identical to include, except that upon failure, it will return an error and execution of the
script will stop.



Require_once
 
This is similar to require, except require_once will check whether the file has been included up to
that point. If it has, it will not include it again. Hence, it will require the file to be included only once.



Include_once
 
Works exactly like require_once, except it will not produce an error.



Conclusion
 

This is probably one of the most important chapters in the book. With the concepts and techniques you
learned in this chapter you should be able to fully utilize your PHP skills to create amazing
applications. The control structures introduced here are the basis of each PHP script you will write
and encounter. Combine these with the next chapters about functions and database connections and
usage and you will be well on your way to creating advanced and complicated web applications.

Exercise 1
In this PHP exercise, you will use a conditional statement to determine what gets printed to the
browser. Write a script that gets the current month and prints one of the following responses,
depending on whether it's August or not:
It's August, so it's really hot.
Not August, so at least not in the peak of the heat.
Hint: the function to get the current month is ' date('F', time()) ' for the month's full name.

Exercise 2
In this PHP exercise, you will put all the loops through their paces. Write a script that will print the
following to the browser:
abc abc abc abc abc abc abc abc abc
xyz xyz xyz xyz xyz xyz xyz xyz xyz
1 2 3 4 5 6 7 8 9

1. Item A
2. Item B
3. Item C
4. Item D
5. Item E
6. Item F

Create the 'abc' row with a while loop, the 'xyz' row with a do-while loop, and the last two sections
with for loops. Remember to include HTML and source code line breaks in your output. No arrays
allowed in this solution.

Exercise 3
Loops are very useful in creating lists and tables. In this PHP exercise, you will use a loop to create a
list of equations for squares.

Using a for loop, write a script that will send to the browser a list of squares for the numbers 1-12.

Use the format, "1 * 1 = 1", and be sure to include code to print each formula on a different line.



Chapter Five – Functions
Introduction
 
Functions in PHP, like in many other languages, give you the power to create extremely versatile and
reusable code. Imagine the following situations. You are writing a script and you want to perform a
certain set of actions. Later on, you need to perform the same set of actions, but you have to change a
variable to another variable, for example. Wouldn’t it be convenient to be able to separate those
actions out, and just replace the variable as needed? This is where functions come in.

In PHP, functions are broken up into user defined functions and pre-defined functions. User defined
functions are custom functions that you create inside of your code. Pre-defined functions are the
functions that PHP comes with.



User Defined Functions
 
A function is basically a block of statements that can be used repeatedly in a program that will only
be executed when you call it. Functions can take parameters that you predefine or they can have no
parameters. Let’s look at the syntax for a function in PHP.

The function name is defined by you. It is a good idea to give the function a name that reflects what
the function will do. The naming convention for functions is pretty much the same as the naming
convention for variables (functions can start with letters or underscores but not numbers). An
important thing to note is that function names are not case-sensitive. Therefore, the following code
will produce an error:

If you want to call the function you created, you just write the name of the function followed by a pair
of parentheses. If your function takes parameters, you put the corresponding variable or variables in
between the parentheses.

Function Arguments
Information can be passed to functions through arguments. An argument is just like a variable.

Arguments are specified after the function name, inside the parentheses. You can add as many



arguments as you want, just separate them with a comma. Let’s modify the previous example to
include a name:

Functions arguments can take default values. For example, if you call the function without specifying
an argument, the function will assume the default argument value;

Return values
Often times, you want the function to return a specific value. To do this, you use the return statement:

Variable Scope
 

When dealing with variables, it is important to know what their scope is (or the context in which they
are defined). For example:

In this case, the variable $var  can be used by any code that is included inside of functions.php . The



context of a variable, however, changes when we create our own functions.
 
Within user-defined functions a local function scope is introduced. Any variable used inside a
function is by default limited to the local function scope. For example:

This script will not produce any output because the echo statement refers to a local version of
the $a  variable, and it has not been assigned a value within this scope. You may notice that this is a
little bit different from the C language in that global variables in C are automatically available to
functions unless specifically overridden by a local definition. This can cause some problems in that
people may inadvertently change a global variable. In PHP global variables must be declared global
inside a function if they are going to be used in that function.

Let’s look at how to declare variables as global.



 
Pre-defined functions
 
PHP comes built with many pre-defined functions and this is what makes PHP so efficient and useful.
We cannot possible examine all of the PHP functions as this will take another book itself (currently,
the PHP documentation lists 9457 built in functions.). Let’s start with the most basic functions that can
be used inside of PHP.
Echo, Print, exit, die
Echo
Echo is the language construct in PHP that allows us to output string data. PHP will automatically
convert numerical variables to strings. We’ve already used echo in previous examples in this book,
so you should be familiar with this function by now.

Print
Print is another language construct that does the same thing as echo, but it is older and a bit slower.
Therefore, it is usually better to use echo.

A function that is not exactly related to print but shares enough of the name for us to place it here, is
the print_r()  function. This function allows us to print the contents of an array to the screen.

Exit and Die
These functions allow you to print out a message to the screen and terminate the script. The two
functions are equivalent to one another and you can use whichever. The syntax for both is:

String functions
 
PHP comes with a wide range of functions for string manipulation.

Word count
PHP comes with a pre-built function that will count the number of words in a string for you. It is of
the following form:

The second argument of the function is optional and can take 3 values. Here are the supported values



and the result returned from each:

0 - returns the number of words found
1 - returns an array containing all the words found inside the string
2 - returns an associative array, where the key is the numeric position of the word inside
the string  and the value is the actual word itself

The function takes a third optional argument that we didn’t specify here. The third parameter is a list
of additional characters that you want to be considered as words. You just put the symbols next to
each other in a string with no other formatting.

String Shuffle
This function allows you to randomly shuffle the characters inside of a string. This comes in handy if
you want to create pseudo-unique names for files or something like that.

Replace parts of a string
PHP has a number of different functions that can help you with this. The simplest one is the str_replace()
function. It takes the form:

The arguments can be strings or arrays. If needle  and replacement  are arrays, then str_replace()  takes a
value from each array and uses them to search and replace on haystack . If replacement  has fewer values
than needle , then an empty string is used for the rest of replacement values. If needle  is an array
and replacement  is a string, then this replacement string is used for every value of haystack . The converse
would not make sense, though.

There is an optional fourth argument that could be passed which will be set to the number of
replacements performed.

There is a modification to the str_replace function that will replace without regard to case. In other
words, it will do a case-insensitive replace. This function is called str_ireplace  and takes the same
arguments.

String length
There are a number of functions in PHP that will return the length of a string. The simplest to use is
the following:



Another function you can utilize to do this is the mb_strlen();

This function has an optional parameter which is the encoding of the string. For example, if you want
to set the encoding to UTF-8, you just provide the string ‘UTF-8’ . PHP supports numerous encoding
types which you can easily find by going to the official PHP manual.

Another way to count the number of characters is to use the iconv_strlen()  function.It works very much
like the mb_strlen()  function and takes the same parameters, except it is a lot stricter when it comes to
bad sequences inside your string.

The reason for the different functions is that they actually count different things. strlen()  counts the
number of bytes inside of a string. Usually a character is equivalent to one byte, but that is not always
the case. This is why the other functions exist.

Sometimes you will find that you have a string that has unneeded whitespace at the end of it.To get of
whitespace on both sides of a string, you can use the trim()  function.A useful feature of the trim()
function is that it can trim not only whitespace but any additional characters that you
specify.Alternatively, if you only want to trim from the left or the right, there are the ltrim() and rtrim()
functions.

Finding substrings in a string             
 
The simplest way to return a part of a string is to use the substr()  function. This function takes two
required parameters and one optional parameter. The first parameter is the string that you are
referencing. The second parameter is the start of the portion of the string. This parameter can be either
positive or negative. If positive, the returned string will be the string that starts from the specified
location within the main string. If negative, the returned string will start from the end of the main
string. The third parameter is optional and is the length of the string you want returned. It can also be
positive or negative. If it is positive, the returned string will contain at most, that number of
characters. If the value is negative, the value specifies how many characters will be omitted from the



main string. Here are examples:

If you want to find the number of times a string occurs inside another string you can use
the substr_count()  function. This function takes two required parameters and two optional parameters.
Here is the syntax for the function and some examples on how to use it in your own code:

The first parameter is the string to check. The second parameter is the string to search for. The third
parameter specifies where in the string to start searching. The third parameter specifies the length of
the search.

Another function that finds a substring inside a larger string is the strpos()  function. This function finds
the position of the first occurrence of a string inside another string. Let’s look at the syntax for the
function as well as a couple of different examples to understand it:

The first parameter is the string to check. The second parameter is the string to search for. The third
parameter specifies where in the string to start searching.



There is an alternative version to this function that is case-insensitive. This function is
the stripos() function. It takes the same parameters as the strpos()  function and works the same way except
it is case-insensitive.

There are two similar functions that will return the last occurrence of a string inside another string.
Again, there is a case-sensitive and a case-insensitive version of these functions.These are
the strripos() and the strrpos()  functions. They take the same parameters as the above two functions and
work in the same way.             

String case switches
Sometimes you will find yourself having to convert strings from all caps to lowercase or vice versa
or even have to capitalize words. Luckily, there are functions in PHP that will save you from having
to do that by yourself.

The two most common and reciprocal functions are strtolower() and strtoupper() . Both of these functions
take only 1 parameter and that is the string that you want to edit. Here is an example of both functions:

The other case functions that you might find useful arethe ucwords() and the ucfirst() . Here is an example:

Strings to Arrays and back
There are two very important functions in PHP that allow you to convert a string into an array and an
array into a string. We’ll take a look at both.

The first function is the implode()  function. This function takes an array and joins the array elements
with a string. The syntax is the following:

The separator specifies what to be placed in between the array elements. Here is an example:



This is a very powerful function that, if used properly, can save you from having to write out code
and cut down on execution time. Make sure to look at the exercises at the end of the chapter to see an
example of how this function can be used to optimized code performance.

Let’s look at the other function. We saw how to implode an array into a string, now let’s look at how
to explode a string into an array. The function is called explode()  and takes two parameters.

The separator is the part of the string that you want to separate by and the string is the string you are
exploding. Here is an example:

 



Conclusion
 
We’ve expanded our PHP knowledge even more in this chapter by covering the topics of functions in
PHP. We covered user-defined functions and a small amount of the pre-defined functions in PHP.
Here are some practice exercises to make you comfortable with functions.

Exercise 1
 
In chapter 2, exercises 2 and 3 you created an associative array that represented a menu and had to
output some string based on the contents of the array. We revisit this array in this exercise. Using the
same array, create a function that takes three parameters: the menu array, the category selection and
meal selection. The function has to output an HTML string. The string should be a paragraph tag
containing the content in the following format:
You picked: {name of meal here (in bold)}.
This meal is made from: {list ingredients here (comma-separated list)}.
The nutritional information for this meal is: {list nutritional information here (comma-separated list)}.
 
Do not use loops! Use the aforementioned string functions to do this.

Exercise 2

This PHP exercise has two parts. For the first, you will create a function to accept two arguments,
perform a calculation using them, then return a sentence with the result to the browser. The function
will calculate the area of a rectangle, with the two arguments being width and height. (Reminder: area
= width * height.) The sentence to be returned is "A rectangle of length $l and width $w has an area
of $area.", where $l and $w are the arguments and $area is the result.

Exercise 3
For this PHP exercise, first create an array called $months. Use the names of the months as keys, and
the number of days for each month as values. For February, use the following for your value: "28
days, if leap year 29".

Next, write a function to create an option element for a form's select field. Make sure each option will
be upper case. Both the array and the function should precede the HTML for the page.

 

Once again, you will be requesting user input. Create a form for the user with the request, "Please
choose a month." Next, provide a select field with the months as options, looping through the array
you created and using the function to create the option elements.

When the user clicks the submit button, return the statement "The month of $month has $number
days.", where $month is the name of the month the user chose, and $number is the number of days. Be
sure to include a different response for February.



Chapter Six – Databases
 



Introduction
 

In this chapter we will begin our discussion of using databases inside of our PHP applications. For
this we will be using the MySQL database engine and the PHPMyAdmin interface that comes with
your LAMP package of choice. We assume you have those installed and activated and are ready to
continue.

To be able to manipulate databases, we will be using the mysqli API provided with PHP version 5
and later as well as the PDO abstraction layer. Let’s start by looking into what APIs are. Some of the
following content is referenced directly from the PHP Manual.



What is an API?
 

An API (Application Programming Interface) defines the classes, methods, functions and variables
that your application will need to call in order to carry out a desired task. In the case of PHP
applications that need to communicate with databases the necessary APIs are usually exposed via
PHP extensions.

APIs can be procedural or object-oriented. With a procedural API you call functions to carry out
tasks, with the object-oriented API you instantiate classes and then call methods on the resulting
objects. Of the two the latter is usually the preferred interface, as it is more modern and leads to
better organized code.

We have not yet covered OOP (object-oriented programming) in PHP, so if you are not familiar
with the concept, you can skip to chapter 10 of this book and then return to this chapter after you
have gotten a hang of OOP!

There are several APIs available that will allow you to connect to the MySQL server. We will have a
discussion of the options and which to choose depending on your application.

Connectors
MySQL provides documentation that explains all its terms. The term connector refers to a piece of
software that allows your application to connect to the MySQL database server. MySQL has a variety
of connectors depending on your language, including connectors for PHP.

When your application requires a database, you need to write your code to perform activities such as
connecting to the database server, querying the database, updating the database, removing entries and
other database-related functions.  Software is required to provide the API that your PHP application
will use, and also handle the communication between your application and the database server,
possibly using other intermediate libraries where necessary. This software is known generically as a
connector, as it allows your application to connect to a database server.

Drivers
A driver is a piece of software designed to communicate with a specific type of database server. The
driver may also call a library, such as the MySQL Client Library or the MySQL Native Driver. These
libraries implement the low-level protocol used to communicate with the MySQL database server.

By way of an example, the PHP Data Objects (PDO) database abstraction layer may use one of
several database-specific drivers. One of the drivers it has available is the PDO MYSQL driver,
which allows it to interface with the MySQL server.

Sometimes people use the terms connector and driver interchangeably, this can be confusing. In the
MySQL-related documentation the term "driver" is reserved for software that provides the database-
specific part of a connector package.

Extensions
In the PHP documentation you will come across another term - extension. The PHP code consists of a
core, with optional extensions to the core functionality. PHP's MySQL-related extensions, such as



the mysqli extension, and the mysql extension, are implemented using the PHP extension framework.

An extension typically exposes an API to the PHP programmer, to allow its facilities to be used
programmatically. However, some extensions which use the PHP extension framework do not expose
an API to the PHP programmer.

The PDO MySQL driver extension, for example, does not expose an API to the PHP programmer, but
provides an interface to the PDO layer above it.

The terms API and extension should not be taken to mean the same thing, as an extension may not
necessarily expose an API to the programmer.

PHP MySQL APIs
PHP offers three main API options to connect to a MySQL server. One of those options, however, is
deprecated and we will not include it in our discussion. Here are the three API options:

MySQL Extension;
This is deprecated in newer version of PHP;

MySQLi Extension;
PHP Data Objects (PDO);

Each has its own advantages and disadvantages. The following discussion aims to give a brief
introduction to the key aspects of each API.

mysqli Extension
The mysqli extension, or as it is sometimes known, the MySQL improved extension, was developed
to take advantage of new features found in MySQL systems versions 4.1.3 and newer.
The mysqli extension is included with PHP versions 5 and later.

The mysqli extension has a number of benefits, the key enhancements over the mysqlextension being:

Object-oriented interface
Support for Prepared Statements
Support for Multiple Statements
Support for Transactions
Enhanced debugging capabilities
Embedded server support

PDO Extension
PHP Data Objects, or PDO, is a database abstraction layer specifically for PHP applications. PDO
provides a consistent API for your PHP application regardless of the type of database server your
application will connect to. In theory, if you are using the PDO API, you could switch the database
server you used, from say Firebird to MySQL, and only need to make minor changes to your PHP
code.

Other examples of database abstraction layers include JDBC for Java applications and DBI for Perl.

While PDO has its advantages, such as a clean, simple, portable API, its main disadvantage is that it
doesn't allow you to use all of the advanced features that are available in the latest versions of
MySQL server. For example, PDO does not allow you to use MySQL's support for Multiple



Statements.



PHPMyAdmin and getting familiar with MySQL
 

Let’s start by discussing MySQL and the PHPMyAdmin graphical user interface. We presume that you
would prefer to use this more intuitive option to the command line version of MySQL (unless you
really want to have more control, in which case, go for it!).

Basics
MySQL is a database server that allows you to create and store multiple databases for use. A
database is a place where you store all of the data for a given application. A database consists of
multiple tables with entries. Each row of a table represents a database entry and each column of that
table represents some particular information. Below is a picture of the PHPMyAdmin interface with a
database open showing three tables inside:

Below is a picture of a single table showing multiple rows and columns:

 

 



MySQLi
Dual interface
The mysqli extension features a dual interface. It supports the procedural and object-oriented
programming paradigm.

Users migrating from the old mysql extension may prefer the procedural interface. The procedural
interface is similar to that of the old mysql extension. In many cases, the function names differ only by
prefix. Some mysqli functions take a connection handle as their first argument, whereas matching
functions in the old mysql interface take it as an optional last argument.

In addition to the classical procedural interface, users can choose to use the object-oriented interface.
The documentation is organized using the object-oriented interface. The object-oriented interface
shows functions grouped by their purpose, making it easier to get started. The reference section gives
examples for both syntax variants.

There are no significant performance differences between the two interfaces. Users can base their
choice on personal preference.



Connections
The MySQL server supports the use of different transport layers for connections. Connections use
TCP/IP, Unix domain sockets or Windows named pipes.

The hostname localhost has a special meaning. It is bound to the use of Unix domain sockets. It is not
possible to open a TCP/IP connection using the hostname localhost you must use 127.0.0.1 instead.



 

Depending on the connection function used, assorted parameters can be omitted. If a parameter is not
provided, then the extension attempts to use the default values that are set in the PHP configuration
file.

The resulting parameter values are then passed to the client library that is used by the extension. If the
client library detects empty or unset parameters, then it may default to the library built-in values.

Built-in connection library defaults
If the host value is unset or empty, then the client library will default to a Unix socket connection on
localhost. If socket is unset or empty, and a Unix socket connection is requested, then a connection to
the default socket on /tmp/mysql.sock is attempted.

On Windows systems, the host name . is interpreted by the client library as an attempt to open a
Windows named pipe based connection. In this case the socket parameter is interpreted as the pipe



name. If not given or empty, then the socket (pipe name) defaults to \\.\pipe\MySQL.

If neither a Unix domain socket based not a Windows named pipe based connection is to be
established and the port parameter value is unset, the library will default to port 3306.

The mysqlnd library and the MySQL Client Library (libmysqlclient) implement the same logic for
determining defaults.

Connection options
Connection options are available to, for example, set init commands which are executed upon
connect, or for requesting use of a certain charset. Connection options must be set before a network
connection is established.

For setting a connection option, the connect operation has to be performed in three steps: creating a
connection handle with mysqli_init(), setting the requested options using mysqli_options(), and
establishing the network connection with mysqli_real_connect().

Executing statements
 
Statements can be executed with the mysqli_query(), mysqli_real_query() and mysqli_multi_query() functions.
The mysqli_query() function is the most common, and combines the executing statement with a buffered
fetch of its result set, if any, in one call. Calling mysqli_query() is identical to
calling mysqli_real_query() followed by mysqli_store_result() .

After statement execution results can be retrieved at once to be buffered by the client or by read row
by row. Client-side result set buffering allows the server to free resources associated with the
statement results as early as possible. Generally speaking, clients are slow consuming result sets.
Therefore, it is recommended to use buffered result sets. mysqli_query()  combines statement execution
and result set buffering.

PHP applications can navigate freely through buffered results. Navigation is fast because the result
sets are held in client memory. Please, keep in mind that it is often easier to scale by client than it is
to scale the server.



The above example will output:

Prepared statements



The MySQL database supports prepared statements. A prepared statement or a parameterized
statement is used to execute the same statement repeatedly with high efficiency.

Basic workflow
The prepared statement execution consists of two stages: prepare and execute. At the prepare stage a
statement template is sent to the database server. The server performs a syntax check and initializes
server internal resources for later use.

The MySQL server supports using anonymous, positional placeholder with ?.

Prepare is followed by execute. During execute the client binds parameter values and sends them to
the server. The server creates a statement from the statement template and the bound values to execute
it using the previously created internal resources.

A prepared statement can be executed repeatedly. Upon every execution the current value of the
bound variable is evaluated and sent to the server. The statement is not parsed again. The statement



template is not transferred to the server again.             

The above example will output:



Every prepared statement occupies server resources. Statements should be closed explicitly
immediately after use. If not done explicitly, the statement will be closed when the statement handle is
freed by PHP.

Using a prepared statement is not always the most efficient way of executing a statement. A prepared
statement executed only once causes more client-server round-trips than a non-prepared statement.
This is why the SELECT is not run as a prepared statement above.             



Conclusion
In this chapter we introduced some concepts related to creating databases and handling database
connections using the MySQLi API in PHP. You should now be able to create your own databases
using the PHPMyAdmin interface and connect to them with PHP.



Chapter Seven – Form Data
Introduction
One of the most powerful features of PHP is the way it handles HTML forms. The basic concept that
is important to understand is that any form element will automatically be available to your PHP
scripts.

In order to be able to use form data inside of PHP, you need to be familiar with HTML forms. We
won’t spend too much time on reviewing HTML forms. Here is an example HTML form:

There is nothing special about this form. It is a straight HTML form with no special tags of any kind.
When the user fills in this form and hits the submit button, the action.php  page is called. Alternatively,
you could leave the action parameter empty and the information from the page will be sent to the same
page you are on. (Essentially, it will refresh the page and make the form data available to you).



Methods for sending Form Data
There are two methods for sending form data – POST and GET.

GET is a more limited and less secure method of sending information (although there are ways, such
as using unique tokens, to make GET a bit more secure). GET sends the form data to the URL of the
page. Anytime you see a URL that ends with something that looks something like the following: ?
key=value&key=value&key=value,  you know that you are dealing with GET data.

POST is a bit more secure as users don’t actually get to see the information being sent and it allows
you to send more information.

Both of these methods are available to PHP through the $_GET and $_POST  superglobal arrays.

Referencing information from forms
You will notice that each input element of the HTML form has its own name. This name corresponds
to a key in the corresponding superglobal array. The “method” parameter of the form identifies
whether you are using POST of GET.

Once we have the form data submitted we can just reference the corresponding elements of the array.
For example, if we want to display all the information from the array we can do:

We will get all of the key-value pairs inside of that array.



Security
 

Important!!

Anytime you are dealing with user submitted data, you must assume that the user using your site
has bad intentions. Always assume that you are writing a site that someone is trying to hack. Never
trust that your users are not going to exploit a vulnerability in your site. It’s better to be overly
secure than to not be secure.

When it comes to form data, you have to always be cautious. Think of it this way. When you give a
user a field for them to type their name, who will guarantee that they will type their name in that field?
What happens if they type some PHP code? Or maybe an SQL query? Or maybe some JavaScript?
You have to be the one that makes sure you prevent XSS (cross-site scripting) attacks and SQL
injection. Those are the two most common types of “web hacking” and will cause you intense
headaches if you don’t think ahead of time.

Think of the form from the previous example. When the user fills in this form and hits the submit
button, the action.php  page is called. In this file you would write something like this:

The output will be:

Apart from the htmlspecialchars() and (int) parts, it should be obvious what this does. htmlspecialchars() makes
sure any characters that are special in html are properly encoded so people can't inject HTML tags or
Javascript into your page. For the age field, since we know it is a number, we can just convert it to an
integer which will automatically get rid of any stray characters. You can also have PHP do this for
you automatically by using the filter extension. The $_POST['name'] and $_POST['age']  variables are
automatically set for you by PHP. Aabove we just introduced the $_POST superglobal which contains
all POST data. Notice how the method of our form is POST. If we used the method GET then our
form information would live in the $_GET  superglobal instead.

Form validation is a wide topic that we will not cover in this book, but hopefully this example gives
you an idea of what to do. Generally the page that is your form processing page, you will have a
number of if statements that check a number of things. Here is a general outline of what you should do
when validating a form:

-          If a field is important, meaning that is must have a value (e.g. a password field for a user
registering to your site) you have to check whether that value is set. For example, use
something like: if(!isset($_POST[‘password’])) {do sth here};
-          Generally it is a good idea to create an errors array. This array will contain all of the
errors that occur with the form. When you validate and a validation of a field fails, you add an
error. At the end, you display these errors to your page so the user knows what they did wrong



and can fix their input;
-          Whenever you are sending information to a database, ALWAYS, (ALWAYS ALWAYS
ALWAYS!) use the htmlspecialchars()  function to make sure you don’t get HTML/JS/PHP code
injected into your code. After that you should use a mysqli_real_escape_string()  function. This will
escape any SQL characters (such as the apostrophes) so that you don’t get SQL injection.
-          If you know a field has to be an integer, or some other number, cast it to a number. That
way any string inputs will be prevented;
-          Always test and debug your form with different types of input. Think of yourself as a
hacker. What would you try putting in the form field to make the site break?



Conclusion
 

In this brief chapter we covered some important concepts about dealing with form data and security
issues. Hopefully you have understood the importance of security in your web applications.

Exercise 1
In the next PHP exercise, you will request input from the user, then move the user's response from one
file to another and do something with it.

Create two separate files. The first will contain a form with one input field asking for the user's
favorite city. Use the post method for the form. Although this file contains no PHP code, on my
localhost, it needs the .php extension to successfully call the second file.

The second file will contain PHP code to process the user's response. (In this case, something very
simple.) After the user clicks the submit button, echo back Your favorite city is $city., where $city is
the input from the form.

Hint: the variable that contains the user's input is an array. Arrays will be addressed in future
exercises, but this particular array needs to come into play here. The array variable is
$_POST['name'], where 'name' is the name of your input field.

Exercise 2
One very useful thing you can do with PHP is include the request for user input and the response in
the same file, using conditional statements to tell PHP which one to show. For this PHP exercise,
rewrite the two files of the previous exercise into one file using an if-else conditional statement.

 

Hint: You'll need some way to tell if the form has been submitted. The function to determine if a
variable has been set and is not null is isset().

Exercise 3
For this PHP exercise, you will use the same format as the previous exercise, requesting input in the
first part, and responding in the second, through the magic of PHP's if-else statement. In the first
section, give the user an input field and request that they enter a day of the week.

For the second section, you'll need the following poem:
Laugh on Monday, laugh for danger.
Laugh on Tuesday, kiss a stranger.
Laugh on Wednesday, laugh for a letter.
Laugh on Thursday, something better.
Laugh on Friday, laugh for sorrow.
Laugh on Saturday, joy tomorrow.
Using the else-elseif-else construction, set each line to output in response to the day the user inputs,
with a general response for any input that is not in the poem.



Chapter Eight – Sessions and Cookies
Introduction
Session support in PHP consists of a way to preserve certain data across subsequent accesses. This
enables you to build more customized applications and increase the appeal of your web site. 

A cookie is often used to identify a user. A cookie is a small file that the server embeds on the user's
computer. Each time the same computer requests a page with a browser, it will send the cookie too.
With PHP, you can both create and retrieve cookie values.



Sessions
Sessions are a simple way to store data for individual users against a unique session ID. This can be
used to persist state information between page requests. Session IDs are normally sent to the browser
via session cookies and the ID is used to retrieve existing session data. The absence of an ID or
session cookie lets PHP know to create a new session, and generate a new session ID.

Sessions follow a simple workflow. When a session is started, PHP will either retrieve an existing
session using the ID passed (usually from a session cookie) or if no session is passed it will create a
new session. PHP will populate the $_SESSION superglobal with any session data after the session has
started. When PHP shuts down, it will automatically take the contents of the $_SESSION  superglobal,
serialize it, and send it for storage using the session save handler.

By default, PHP uses the internal files save handler which is set by session.save_handler . This saves
session data on the server at the location specified by the session.save_path  configuration directive.

Sessions can be started manually using the session_start() function. If the session.auto_start  directive is set to
1, a session will automatically start on request startup.

Sessions normally shutdown automatically when PHP is finished executing a script, but can be
manually shutdown using the session_write_close()  function.



 

Caution

Do NOT unset the whole $_SESSION with unset($_SESSION) as this will disable the registering of
session variables through the $_SESSION  superglobal.

Passing the Session ID
There are two methods to propagate a session id:

Cookies
URL parameter

The session module supports both methods. Cookies are optimal, but because they are not always
available, we also provide an alternative way. The second method embeds the session id directly into
URLs.

PHP is capable of transforming links transparently. Unless you are using PHP 4.2.0  or later, you need to
enable it manually when building PHP. Under Unix, pass --enable-trans-sid to configure. If this build
option and the run-time option session.use_trans_sid  are enabled, relative URIs will be changed to contain
the session id automatically.

Alternatively, you can use the constant SID which is defined if the session started. If the client did not
send an appropriate session cookie, it has the form session_name=session_id . Otherwise, it expands to an
empty string. Thus, you can embed it unconditionally into URLs.

The following example demonstrates how to register a variable, and how to link correctly to another
page using SID.



 

Custom Session Handlers
To implement database storage, or any other storage method, you will need to
use session_set_save_handler() to create a set of user-level storage functions. As of PHP 5.4.0 you may
create session handlers using the SessionHandlerInterface or extend internal PHP handlers by inheriting
from SessionHandler .

The callbacks specified in session_set_save_handler() are methods called by PHP during the life-cycle of a
session: open, read, write and close and for the housekeeping tasks: destroy for deleting a session and gc  for
periodic garbage collection.

Therefore, PHP always requires session save handlers. The default is usually the internal 'files' save
handler. A custom save handler can be set using session_set_save_handler() . Alternative internal save
handlers are also provided by PHP extensions, such as sqlite, memcache and memcached and can be set
with session.save_handler .

When the session starts, PHP will internally call the open handler followed by the read callback which
should return an encoded string exactly as it was originally passed for storage. Once the read callback
returns the encoded string, PHP will decode it and then populate the resulting array into the $_SESSION
superglobal.

When PHP shuts down (or when session_write_close() is called), PHP will internally encode
the $_SESSION superglobal and pass this along with the session ID to the write callback. After the write



callback has finished, PHP will internally invoke the close callback handler.

When a session is specifically destroyed, PHP will call the destroy  handler with the session ID.

PHP will call the gc callback from time to time to expire any session records according to the set max
lifetime of a session. This routine should delete all records from persistent storage which were last
accessed longer than the $lifetime .



Cookies
 

PHP transparently supports HTTP cookies. Cookies are a mechanism for storing data in the remote
browser and thus tracking or identifying return users. You can set cookies using the setcookie() or
setrawcookie() function. Cookies are part of the HTTP header, so setcookie() must be called before
any output is sent to the browser. This is the same limitation that header() has. You can use the output
buffering functions to delay the script output until you have decided whether or not to set any cookies
or send any headers.

Any cookies sent to you from the client will automatically be included into a $_COOKIE auto-global
array if variables_order contains "C". If you wish to assign multiple values to a single cookie, just
add [] to the cookie name.

Depending on register_globals, regular PHP variables can be created from cookies. However it's not
recommended to rely on them as this feature is often turned off for the sake of security.

 

For more details, including notes on browser bugs, see the setcookie() and setrawcookie() function.

A cookie is created with the setcookie() function.

Creating and retrieving cookies with PHP
The following example creates a cookie named "user" with the value "John Doe". The cookie will
expire after 30 days (86400 * 30). The "/" means that the cookie is available in entire website
(otherwise, select the directory you prefer).

We then retrieve the value of the cookie "user" (using the global variable $_COOKIE). We also use
the isset() function to find out if the cookie is set:



The setcookie() function must appear BEFORE the <html> tag.

Modifying a cookie using PHP
To modify a cookie, just set (again) the cookie using the setcookie() function:



Deleting a cookie using PHP
To delete a cookie, use the setcookie() function with an expiration date in the past:



 

Check if Cookies are enabled using PHP
The following example creates a small script that checks whether cookies are enabled. First, try to
create a test cookie with the setcookie() function, then count the $_COOKIE array variable:

 



Conclusion
 
In this chapter we covered creating and destroying Cookies and Sessions in PHP



Chapter Nine – File Handling
 



Introduction
File handling is an important part of all web applications. You will sometimes find it necessary to
open and process a file or files for different reasons and tasks. With that being said, we must issue a
word of caution. When you are manipulating files you must be very careful. You can do a lot of
damage if you do something wrong. Common errors are: editing the wrong file, filling a hard-drive
with garbage data, and deleting the content of a file by accident.



File Handling
Reading Files
The readfile() function reads a file and writes it to the output buffer.

Assume we have a text file called "webdictionary.txt", stored on the server, that looks like this:

The PHP code to read the file and write it to the output buffer is as follows (the readfile() function
returns the number of bytes read on success):

Opening files
A better method to open files is with the fopen() function. This function gives you more options than
the readfile() function.

We will use the text file, "webdictionary.txt", during the lessons:

The first parameter of fopen() contains the name of the file to be opened and the second parameter
specifies in which mode the file should be opened. The following example also generates a message
if the fopen() function is unable to open the specified file:

 

Modes Description
r Open a file for read only. File

pointer starts at the beginning
of the file

w Open a file for write only.



Erases the contents of the file
or creates a new file if it
doesn't exist. File pointer
starts at the beginning of the
file             

a Open a file for write only. The
existing data in file is
preserved. File pointer starts
at the end of the file. Creates a
new file if the file doesn't
exist             

x Creates a new file for write
only. Returns FALSE and an
error if file already exists

r+ Open a file for read/write. File
pointer starts at the beginning
of the file

w+ Open a file for read/write.
Erases the contents of the file
or creates a new file if it
doesn't exist. File pointer
starts at the beginning of the
file

a+ Open a file for read/write. The
existing data in file is
preserved. File pointer starts
at the end of the file. Creates a
new file if the file doesn't exist

x+ Creates a new file for
read/write. Returns FALSE
and an error if file already
exists

 

PHP Reading files
The fread() function reads from an open file.

The first parameter of fread() contains the name of the file to read from and the second parameter
specifies the maximum number of bytes to read.

The following PHP code reads the "webdictionary.txt" file to the end:

PHP Closing files



The fclose() function is used to close an open file.

The fclose() requires the name of the file (or a variable that holds the filename) we want to close:

Tip!

It's a good programming practice to close all files after you have finished with them. You don't
want an open file running around on your server taking up resources!

PHP Create File
The fopen() function is also used to create a file. Maybe a little confusing, but in PHP, a file is
created using the same function used to open files.

If you use fopen() on a file that does not exist, it will create it, given that the file is opened for writing
(w) or appending (a).

The example below creates a new file called "testfile.txt". The file will be created in the same
directory where the PHP code resides:

 

PHP Write to File
The fwrite() function is used to write to a file.

The first parameter of fwrite() contains the name of the file to write to and the second parameter is the
string to be written.

The example below writes a couple of names into a new file called "newfile.txt":             

Notice that we wrote to the file "newfile.txt" twice. Each time we wrote to the file we sent the string
$txt that first contained "John Doe" and second contained "Jane Doe". After we finished writing, we
closed the file using the fclose() function.

If we open the "newfile.txt" file it would look like this:



 

PHP Overwriting
Now that "newfile.txt" contains some data we can show what happens when we open an existing file
for writing. All the existing data will be ERASED and we start with an empty file.

In the example below we open our existing file "newfile.txt", and write some new data into it:

If we now open the "newfile.txt" file, both John and Jane have vanished, and only the data we just
wrote is present:



Conclusion
 

With that we conclude our discussion of PHP File Handling. You would find file handling to be
useful if you want to store information on your server, but you don’t need a construct like a database
because you are storing a small amount of information that will not change frequently, for example.
There are many other examples for when File Handling would be useful, but we shall not go into
analyzing those.



Chapter Ten – Object Oriented Programming
Introduction
 

Starting with PHP 5, the object model was rewritten to allow for better performance and more
features. This was a major change from PHP 4. PHP 5 has a full object model.

Among the features in PHP 5 are the inclusions of visibility, abstract and final classes and methods,
additional magic methods, interfaces, cloning and typehinting.

Object-oriented programming is a style of coding that allows developers to group similar tasks into
classes. This helps keep code following the tenet "don't repeat yourself" (DRY) and easy-to-maintain.

One of the major benefits of DRY programming is that, if a piece of information changes in your
program, usually only one change is required to update the code. One of the biggest nightmares for
developers is maintaining code where data is declared over and over again, meaning any changes to
the program become an infinitely more frustrating game of “Where's Waldo?” as they hunt for
duplicated data and functionality.

OOP is intimidating to a lot of developers because it introduces new syntax and, at a glance, appears
to be far more complex than simple procedural, or inline, code. However, upon closer inspection,
OOP is actually a very straightforward and ultimately simpler approach to programming.



Basics
 

Before you can get too deep into the finer points of OOP, a basic understanding of the differences
between objects and classes is necessary. This section will go over the building blocks of classes,
their different capabilities, and some of their uses.

Right off the bat, there's confusion in OOP: seasoned developers start talking about objects and
classes, and they appear to be interchangeable terms. This is not the case, however, though the
difference can be tough to wrap your head around at first.

A class, for example, is like a blueprint for a house. It defines the shape of the house on paper, with
relationships between the different parts of the house clearly defined and planned out, even though the
house doesn't exist.

An object, then, is like the actual house built according to that blueprint. The data stored in the object
is like the wood, wires, and concrete that compose the house: without being assembled according to
the blueprint, it's just a pile of stuff. However, when it all comes together, it becomes an organized,
useful house.

Classes form the structure of data and actions and use that information to build objects. More than one
object can be built from the same class at the same time, each one independent of the others.
Continuing with our construction analogy, it's similar to the way an entire subdivision can be built
from the same blueprint: 150 different houses that all look the same but have different families and
decorations inside.

Class
 

Basic class definitions begin with the keyword class, followed by a class name, followed by a pair of
curly braces which enclose the definitions of the properties and methods belonging to the class.

The class name can be any valid label, provided it is not a PHP reserved word. A valid class name
starts with a letter or underscore, followed by any number of letters, numbers, or underscores. As a
regular expression, it would be expressed thus: [̂a-zA-Z_\x7f-\xff][a-zA-Z0-9_\x7f-\xff]*$.

A class may contain its own constants, variables (called "properties"), and functions (called
"methods").



The pseudo-variable $this is available when a method is called from within an object context. $this  is a
reference to the calling object (usually the object to which the method belongs, but possibly another
object, if the method is called statically from the context of a secondary object).





New
To create an instance of a class, the new keyword must be used. An object will always be created
unless the object has a constructor defined that throws an exception on error. Classes should be
defined before instantiation (and in some cases this is a requirement).

If a string containing the name of a class is used with new, a new instance of that class will be
created. If the class is in a namespace, its fully qualified name must be used when doing this.

In the class context, it is possible to create a new object by new self and new parent.

When assigning an already created instance of a class to a new variable, the new variable will access



the same instance as the object that was assigned. This behaviour is the same when passing instances
to a function. A copy of an already created object can be made by cloning it.

Extends
A class can inherit the methods and properties of another class by using the keyword extends in the
class declaration. It is not possible to extend multiple classes; a class can only inherit from one base
class.

The inherited methods and properties can be overridden by redeclaring them with the same name
defined in the parent class. However, if the parent class has defined a method as final, that method
may not be overridden. It is possible to access the overridden methods or static properties by
referencing them with parent::.

When overriding methods, the parameter signature should remain the same or PHP will generate an
E_STRICT level error. This does not apply to the constructor, which allows overriding with different
parameters.



 

Properties
Class member variables are called "properties". You may also see them referred to using other terms
such as "attributes" or "fields", but for the purposes of this reference we will use "properties". They
are defined by using one of the keywords public, protected, or private, followed by a normal variable
declaration. This declaration may include an initialization, but this initialization must be a constant
value--that is, it must be able to be evaluated at compile time and must not depend on run-time
information in order to be evaluated.

Within class methods non-static properties may be accessed by using -> (Object Operator): $this-
>property (where property is the name of the property). Static properties are accessed by using the ::
(Double Colon): self::$property.

The pseudo-variable $this is available inside any class method when that method is called from
within an object context. $this is a reference to the calling object (usually the object to which the
method belongs, but possibly another object, if the method is called statically from the context of a
secondary object).



 

Constants
It is possible to define constant values on a per-class basis remaining the same and unchangeable.
Constants differ from normal variables in that you don't use the $ symbol to declare or use them.

The value must be a constant expression, not (for example) a variable, a property, a result of a
mathematical operation, or a function call.

As of PHP 5.3.0, it's possible to reference the class using a variable. The variable's value cannot be a
keyword (e.g. self, parent and static). Let’s look at some examples:



 

Autoloading Classes
Many developers writing object-oriented applications create one PHP source file per class
definition. One of the biggest annoyances is having to write a long list of needed includes at the
beginning of each script (one for each class).

A good way to avoid having to write multiple includes is to use the spl_autoload_register()  function. Here
is an example:



In the example, above, "MyClass" is the name of the class that you are trying to instantiate, PHP
passes this name as a string to spl_autoload_register(), which allows you to pick up the variable and
use it to "include" the appropriate class/file. As a result, you don't specifically need to include that
class via an include/require statement...

Just simply call the class you want to instantiate like in the example above, and since you registered a
function (via spl_autoload_register()) of your own that will figure out where all your class are
located, PHP will use that function.

Constructors and destructors
PHP 5 allows developers to declare constructor methods for classes. Classes which have a
constructor method call this method on each newly-created object, so it is suitable for any
initialization that the object may need before it is used.

Important!

Parent constructors are not called implicitly if the child class defines a constructor. In order to
run a parent constructor, a call to parent::__construct()  within the child constructor is required. If the
child does not define a constructor then it may be inherited from the parent class just like a
normal class method (if it was not declared as private).



PHP 5 introduces a destructor concept similar to that of other object-oriented languages, such as C++.
The destructor method will be called as soon as there are no other references to a particular object,
or in any order during the shutdown sequence.



Like constructors, parent destructors will not be called implicitly by the engine. In order to run a
parent destructor, one would have to explicitly call parent::__destruct()  in the destructor body. Also like
constructors, a child class may inherit the parent's destructor if it does not implement one itself.

The destructor will be called even if script execution is stopped using exit() . Calling exit()  in a
destructor will prevent the remaining shutdown routines from executing.

Object Inheritance
Inheritance is a well-established programming principle, and PHP makes use of this principle in its
object model. This principle will affect the way many classes and objects relate to one another.

For example, when you extend a class, the subclass inherits all of the public and protected methods
from the parent class. Unless a class overrides those methods, they will retain their original
functionality.

This is useful for defining and abstracting functionality, and permits the implementation of additional
functionality in similar objects without the need to reimplement all of the shared functionality.



 

Scope Resolution Operator (::)
The Scope Resolution Operator (also called Paamayim Nekudotayim) or in simpler terms, the double
colon, is a token that allows access to static, constant, and overridden properties or methods of a
class.

When referencing these items from outside the class definition, use the name of the class.

As of PHP 5.3.0, it's possible to reference the class using a variable. The variable's value can not be
a keyword (e.g. self, parent and static).



Three special keywords self, parent and static are used to access properties or methods from inside
the class definition.

When an extending class overrides the parents definition of a method, PHP will not call the parent's
method. It's up to the extended class on whether or not the parent's method is called. This also applies
to Constructors and Destructors, Overloading, and Magic method definitions.



 



Conclusion
 

Let’s look at a few exercises for Classes and Objects before we close this book.

Exercise 1
In this PHP exercise, you will build the beginnings of a user registration form. To do this, you will
create a class for making the select field, then use an object derived from the class in the form.

First of all, write an array that includes browser types: Firefox, Chrome, Internet Explorer, Safari,
Opera, Other.

Then begin to write the class Select. You will need two properties, $name for the name of the select
field, and $value , an array to provide the option values. You will also need four methods in addition to
the two methods you will adapt: setName, getName, setValue, getValue. Checking to be sure the value
is an array belongs in the setValue method, so write that here, and delete it from makeSelect .

Now we come to the two functions you wrote to generate the select field. Change the makeOptions
function to iterate over the array argument's values rather than keys. This will be your fifth method.
Then revise the makeSelect function to be the sixth method in your class.

Next comes the HTML. Write a user registration form asking for name, username, email, browser.
Use text fields to collect the user data for the first three, then instantiate an object based on your class
for the select field. When the user clicks the submit button, return the data as confirmation.

If you were creating a registration form to use on the Web, you would want to collect the data in a
database. However, using PHP with mySQL or other databases is beyond the scope of this website.

Exercise 2
In the last PHP exercise, the Select class may have seemed like an awful lot of code to write for a
simple select field. The real value of classes and objects doesn't become apparent until you have
reason to reuse the code. So this time, you will expand your user registration form to use several
select fields.

 

Assume that you have good reason to need data about your users' browsing capabilities. Either you
want to tune your site, the content of your site concerns these issues, or something similar. Using your
select class, you can reuse the class code as often as you like to create select fields.

To build this new version of the registration form, start with the script you wrote for Classes Ex. #1.
Add the value of None as the first value in the $browsers array. Write two more arrays: $speeds,
including values Unknown, DSL, T1, Cable, Dialup, Other; and $os, including Windows, Linux,
Macintosh, Other. (Of course, these could be screen resolution or flash version or any other relevant
capability.)

You want data for how the user browses both at home and work. Above the browser select field, add
the subheading Work Access, and rename the browser label Primary Browser. (We all know that
many people use more than one.) Below that, add labels and select field objects for Connection



Speed and Operating System. Next, add the subheading Home Access, with three new select fields
corresponding to the ones you created for Work Access.

Since you are using so many objects in this script, it's a good idea to destroy each one after it has
done its work. This will free up the memory the object occupied.

When the user hits the submit button, return the user's select field choices in two bulleted lists under
the same headings (Work Access, Home Access).

Exercise 3
If you completed PHP Classes Ex. #1 and #2, you have now written a working user registration form.
Time to tweak it and make it better.

First of all, it would be preferable to have the message --Select one-- at the top of each select field.
Add a line to the makeSelect() method to accomplish this. The value should be No response. You
won't need the "None" value at the top of the $browsers array, so delete that. With this change to
class Select, you can see how using a class can simplify your work. One line of code, and all the
select fields update.

Your user responses won't be very useful without some basic information, so the next task is to make
three of the fields required. Above the form, add * Indicates required field. Then add an asterisk to
the Name, Username, and Email fields.

Next, add code to validate the data in those three fields. This code will appear in the second half of
the script, after you have retrieved data from the $_POST[] variable. The function empty() will let
you know if there is data in the field. To help the user supply missing information, include a back
button with the error message. (If you completed Forms Ex. #3, you have already written one of
those.)

The email field is a special case. Not only can you check for the presence of data, you can check for
an @(at symbol), which would be included in any valid email address. So here the data must satify
two conditions to be acceptable. You can use the strpos() function to confirm the presence of the @
character.

 

Congratulations! You did it. This was the last chapter in our PHP course. You should now be able to
create your own applications and tackle all sorts of projects. We hope you enjoyed this book as much
as we did writing it. Hopefully you found it useful and you took away some useful concepts and
techniques.



Answers to Exercises
These are the answers to exercises after each chapter. Keep in mind that many of these exercises can
be solved in different ways, so your code does not need to be exactly like the one provided below to
work properly. In many cases the code provided is just the general template from you can develop
your own code for the exercise.



Chapter 2
 

Exercise 1
 



Exercise 2
 



Exercise 3
 



Chapter 3
Exercise 1



Exercise 2
 



Exercise 3
 



Chapter 4
Exercise 1
 



Exercise 2



Exercise 3
 



Chapter 5
Exercise 1



 



Exercise 2
 



Exercise 3





Chapter 7
Exercise 1

 



Exercise 2
 



Exercise 3
 



Chapter 10

Exercise 1







Exercise 2



 



 





Exercise 3









Conclusion
 

This book has found you because you have the ultimate potential.

It may be easy to think and feel that you are limited but the truth is you are more than what you have
assumed you are. We have been there. We have been in such a situation: when giving up or settling
with what is comfortable feels like the best choice. Luckily, the heart which is the dwelling place for
passion has told us otherwise.

It was in 2014 when our team was created. Our compass was this – the dream of coming up with
books that can spread knowledge and education about programming. The goal was to reach as many
people across the world. For them to learn how to program and in the process, find solutions, perform
mathematical calculations, show graphics and images, process and store data and much more. Our
whole journey to make such dream come true has been very pivotal in our individual lives. We
believe that a dream shared becomes a reality.

We want you to be part of this journey, of this wonderful reality. We want to make learning
programming easy and fun for you. In addition, we want to open your eyes to the truth that
programming can be a start-off point for more beautiful things in your life.

Programming may have this usual stereotype of being too geeky and too stressful. We would like to
tell you that nowadays, we enjoy this lifestyle: surf-program-read-write-eat. How amazing is that? If
you enjoy this kind of life, we assure you that nothing is impossible and that like us, you can also
make programming a stepping stone to unlock your potential to solve problems, maximize solutions,
and enjoy the life that you truly deserve.

This book has found you because you are at the brink of everything fantastic!

Thanks for reading!

You can be interested in:

“CSS: Learn CSS In A DAY!”

 

http://www.amazon.com/CSS-Ultimate-Learning-Development-Beginners-ebook/dp/B011EXASE4/ref=sr_1_1?s=digital-text&ie=UTF8&qid=1437515731&sr=1-1&keywords=css+acodemy


 

Here is our full library: http://amzn.to/1HPABQI

To your success,

Acodemy.

 

http://www.amazon.com/CSS-Ultimate-Learning-Development-Beginners-ebook/dp/B011EXASE4/ref=sr_1_1?s=digital-text&ie=UTF8&qid=1437515731&sr=1-1&keywords=css+acodemy
http://www.amazon.com/Acodemy/e/B00TQ910KU/ref=sr_tc_2_0?qid=1434474148&sr=1-2-ent

	Preface
	Chapter One – Introduction, Setup and “Hello World”
	Introduction to PHP
	Setting up Our Work Environment
	Our Very First PHP file

	Chapter Two – Variables
	Introduction to Variables
	Basics
	Rules

	Variable Types and Typecasting
	Boolean
	Number
	String
	Array
	Objects
	NULL

	Conclusion

	Chapter Three – Logical, Math and other Expressions and Operations
	Introduction to Expressions and Operators
	Expressions
	Operators

	Conclusion

	Chapter Four – Control Structures
	Introduction
	If statements
	If Statements
	If Else Statements
	If-elseif-else statement

	Switch
	Alternate syntax to control structures
	While
	Do-while
	For
	Foreach
	Break
	Continue
	Return
	Include
	Require
	Require_once
	Include_once
	Conclusion

	Chapter Five – Functions
	Introduction
	User Defined Functions
	Function Arguments
	Return values
	Variable Scope

	Pre-defined functions
	Echo, Print, exit, die
	String functions

	Conclusion

	Chapter Six – Databases
	Introduction
	What is an API?
	Connectors
	Drivers
	Extensions
	PHP MySQL APIs
	mysqli Extension
	PDO Extension

	PHPMyAdmin and getting familiar with MySQL
	Basics

	MySQLi
	Dual interface
	Connections
	Executing statements
	Prepared statements

	Conclusion

	Chapter Seven – Form Data
	Introduction
	Methods for sending Form Data
	Referencing information from forms

	Security
	Conclusion

	Chapter Eight – Sessions and Cookies
	Introduction
	Sessions
	Passing the Session ID
	Custom Session Handlers

	Cookies
	Creating and retrieving cookies with PHP
	Modifying a cookie using PHP
	Deleting a cookie using PHP
	Check if Cookies are enabled using PHP

	Conclusion

	Chapter Nine – File Handling
	Introduction
	File Handling
	Reading Files
	Opening files
	PHP Reading files
	PHP Closing files
	PHP Create File
	PHP Write to File
	PHP Overwriting

	Conclusion

	Chapter Ten – Object Oriented Programming
	Introduction
	Basics
	Class
	extends
	Properties
	Constants
	Autoloading Classes
	Constructors and destructors
	Object Inheritance
	Scope Resolution Operator �⠀㨀㨀)

	Conclusion

	Answers to Exercises
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 7
	Chapter 10


